TwitterTest Documentation

Environment

Developed on Mac OS X 10.6.5 with Xcode 3.2.5. Tested in the "Debug" configuration against:

· iPhone 3GS with iOS 4.2

· iPod Touch 1G with iOS 3.0s

Twitter

Authentication

Twitter requires the OAuth protocol for authentication. An application needs to be registered with Twitter if it wants to access the Twitter API. The registration is automatic. As a result, the application gets a consumer key and consumer secret which are both used in Oauth.

There are two ways to authenticate with OAuth:

· Twitter web page: An application asks for a request token from Twitter with its key & secret and passes this request token to Twitter web page. On that page, the user authenticates him/herself and grants access to the application which is identified by name there (derived from the request token). This way, the application never gets to see the user name or password. As a result, the application receives an access token which grants access to the Twitter API. The process is detailed here. This is what's used in the TwitterTest app.

· XAuth: The application gets the user name and password from the user and gets the access token from Twitter. In that respect, it is similar to the basic authentication used before. However, an application needs to be approved by Twitter to access XAuth. More details here.

API

The API is HTTP based and has three parts: a "REST API" (posting, timeline, user etc.), a search API (which is also RESTful) and a streaming API. TwitterTest only uses the REST API.

The documentation for posting a tweet is here, the one for the friend timeline is here. Twitter has a web console for testing the API but it ignores all parameters and is pretty useless! So you're better off with the free Apigee API Console.

TwitterTest App

Overall Structure

The goal of the app is to have its Twitter functionality embedded into another app. That's why it is split into two parts – the "generic Twitter part" and the "TwitterTest specific part". In the Xcode project, the TwitterTest specific part consists of the classes in the "Classes – Local Stuff" folder and the two XIBs in the "Resources" folder whose name starts with "Local". The classes are the storage delegate (storing the access token and the auto login setting) and the UI delegate which handles info messages, a progress indicator, network activity display and showing details of a music link / music link checking errors.

The main class is "TwitterManager", a singleton with two major responsibilities:

· It has a "Twitter engine" and handles all communication with Twitter, including authentication through OAuth. It is also a registered delegate for Twitter / OAuth protocols.

· It handles the additional functionalities, such as checking links if they are music links and loading tweet author pictures.

As mentioned above, the "TwitterManager" defines protocols for UI and storage.

Libraries

Twitter

Accessing Twitter through OAuth is accomplished through the Twitter-OAuth-iPhone library (BSD license). This library wraps two other frameworks and two OAuth apps:

· MGTwitterEngine (custom license): This is the most popular Twitter engine for iOS. It wraps the Twitter API in asynchronous calls. After sending a request, a callback is made to the "requestSucceeded" / "requestFailed" methods and possibly a request-specific one ("statusesReceived" in case of sending a tweet or requesting the timeline). Tweets from the Twitter API are delivered as dictionaries.

· OAuthConsumer Framework (Apache 2.0 license): This is multi-language OAuth framework. It is included as a binary library file plus header files.

· Oauth-MyTwitter (no license): sample app for integrating Twitter and OAuth

· OAuth Test Application (no license): another Twitter – OAuth app

Part of this library is a demo app where I used the controller as the base for the "TwitterManager". Through the various code pieces, the library wraps the Twitter API HTTP requests with OAuth.

I found three issues with this library:

· At times, OAuth didn't work on a iPod Touch 1G with iOS 3.0. I would get errors in the console that the user canceled the authentication ("NSURLErrorDomain error -1012"); the "SA_OAuthTwitterEngine.outhTicketFailed()" method was called. As a result, no access token was received and an invalid Twitter URL called (with "null" as the parameter). However, on Dec 1 it worked fine again. I have no idea why it didn't work. Look for "// KARSTEN" comments in the code to find diagnostics code.

· No HTTP parameters were passed on to Twitter. This prevented the timeline from working since the page and number of tweets are passed in. I fixed this (look for "// KARSTEN" in "SA_OAuthTwitterEngine._sendRequestWithMethod()" where I enabled parameters and "MGTwitterEngine.sendUpdate()"). This may have to be fixed in other API calls, too – either enabling or disabling the parameters.

· The are various warning messages around classes from the MGTwitterEngine not implementing proper XML parsing methods.

RegExKitLite

This is regular expression library under a BSD-derived license.

Design

TwitterManager

· The TwitterManager has the Twitter API consumer key and secret defined as constants at the top of the implementation file.

· It uses a regular expression to check tweets for links (also a constant at the top of the implementation file).

· Calls to MGTwitterEngine return a request ID which is later used in the delegate callbacks; these IDs are ignored. However, through the "sendingTweet" flag the manger distinguishes tweets received after posting a tweet from tweets after a timeline request.

· "statusesReceived" parses the tweet content into "LinkDataTwitter" (only the first link in a tweet is used), finishes the progress indicator and schedules the link check in the background.

· For checking multiple links in timeline page, "checkLinks" uses an "NSOperationQueue" with "MAX_SIMULTANEOUS_LINK_CHECKS" (currently: 1) parallel checks going on. This can be interrupted through the "stopChecking" flag (e.g., when reloading the timeline or going to a different page). The result of checking links is not cached.

· "getImage" gets the author image (for an author URL) from the image cache and schedules loading it in the background if it isn't there. It just uses "performSelectorInBackground" for this since this part will likely be replaced with a different image loading cache / scheme in the final app.

LinkChecker

· Defines three regular expressions for music links as constants at the top of the implementation file: MIME type, special protocol and file extension.

· In order to resolve URL shorteners / HTTP redirection and to determine the link type, an HTTP HEAD request is used that doesn't retrieve any data. A bug in iOS, however, causes the redirected request to be a GET request again. That's why the asynchronous "[NSURLConnection connectionWithRequest]" is used, since this allows to set the request type to HEAD again in "willSendRequest". This also forces us to fiddle with the run loop mode which doesn't fit if executed in the background (see "performAsynchronousCheck" and "performSynchronousCheck").

· If there are any errors in resolving / loading a URL, "didFailWithError" will set the error in the link data.

· For asynchronous checks, the delegate of "LinkCheckerCallback" is called back (which is the TwitterManager).

TimelineViewController

· Registers itself with the UI delegate for progress indicator display and callback of updated tweets / author pictures.

· The timeline "pageCounter" is set to the first page only when the view is loaded, so it remembers the page when switching back and forth between tabs.

· Uses a author picture placeholder if picture isn't in the cache yet.

· "updateTimeline" is called when new tweets have arrived and reloads the table, "getImageLoadResult" gets an author picture and updates all visible tweets.

· "handleCellClicked" gets updated link data from the TwitterManager, if necessary, and either shows the web page, the music link handler or the check error handler.

WebSiteController

· Called with the first tweet of a link.

· In "viewWillAppear", previous web view are removed (otherwise, display and back navigation gets screwed up).

· In "shouldStartLoadWithRequest", we need to distinguish between links loaded by the page itself and links clicked by the users. The latter ones are checked with LinkChecker if they are music links. Since this is a blocking call from the main thread, there are no UI updates, and the whole UI is frozen until this check ends. Similar to "handleCellClicked" from the TimelineViewController, it either just lets the link being followed by Safari or shows the music link / check error handler.

· The "progressCounter" is used in conjunction with the delegate methods "webViewDidStartLoad" and "webViewDidFinishLoad" to determine, when to stop showing the network activity indicator.

TweetViewController

· Registers itself with the UI delegate for progress indicator display.

Miscellaneous

· Under iOS 4.x+, the TimelineViewController users relative date display (with a fixed German locale).

· Under iOS 4.x+, the LocalMusicViewController uses the inline media player.

· The "stock" "Build & Analyze" only found issues in "SA_OAuthTwitterController.m" and "RegExKitLite.m".

· Memory leak check still finds some issues, among them the image cache (which I'm not sure were correct).

· Occasionally, Twitter API requests just fail – that's Twitter's fault, not mine. :-)

· I didn't implement anything special for memory warnings (such as emptying the image cache).

Tasks

· The icons in the timeline look ugly and are too small – I copied them and painted them white by hand. :-) Please replace them with yours.

· Maybe the link check in the web view needs some sort of timeout method to stop checking after, say, half a second.

· Updating the pictures in the timeline through callbacks doesn't seem to happen on the main thread, but it still seems to update the table somehow (see "TwitterManager.loadImage").

· I got a crash once on my iPod Touch while scrolling through the timeline, with links being checked and images loaded in the background. Couldn't repeat it and stack trace was useless. Error was: "*** Terminating app due to uncaught exception 'NSRangeException', reason: '*** -[NSCFArray objectAtIndex:]: index (5) beyond bounds (5)'"

